Irrigation Scheduling Using Remote Sensing Data Assimilation Approach
نویسندگان
چکیده
Remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these linked models that use stochastic parameter estimation with genetic algorithm (GA) to improve irrigation scheduling. In this study, an innovative irrigation scheduling technique, based on soil moisture and crop water productivity, was evaluated with data from Sirsa Irrigation Circle of Haryana State, India. This was done by integrating SEBAL (Surface Energy Balance Algorithm for Land)-based evapotranspiration (ET) rates with the SWAP (Soil-Water-Atmosphere-Plant), a processbased crop growth model, using a GA. Remotely sensed ET and ground measurements from an experiment field were combined to estimate SWAP model parameters such as sowing and harvesting dates, irrigation scheduling, and groundwater levels to estimate soil moisture. Modeling results showed that estimated sowing, harvesting, and irrigation application dates were within ±10 days of observations and produced good estimates of ET and soil moisture fluxes. The SWAP-GA model driven by the remotely sensed ET moderately improved surface soil moisture estimates suggesting that it has the potential to serve as an operational tool for irrigation scheduling purposes.
منابع مشابه
Estimation of Actual Evapotranspiration, Water productivity, and Irrigation Efficiency of Wheat Fields in Surface and Sprinkler Irrigation Systems Using Remote Sensing
In arid and semi-arid regions, water resource management and optimization of applying irrigation water are particularly important. For optimization of applying irrigation water, the estimated values of actual evapotranspiration are necessary for avoiding excessive or inadequate applying water. The estimation of actual crop evapotranspiration is not possible in large areas using the traditional ...
متن کاملDetecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor
Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...
متن کاملRemote Sensing and Gis in Inflow Estimation: the Magat Reservoir, Philippines Experience
In managing a multipurpose dam, knowledge of inflow is essential in planning and scheduling discharges for optimal power production and irrigation supply, and flood control. Utilization of satellite imagery improves inflow estimates provided by digital spatial data instead of those from calculations on drawn maps; the former yields measurements over an area instead of extrapolations from point ...
متن کاملTowards the Improvement of Blue Water Evapotranspiration Estimates by Combining Remote Sensing and Model Simulation
The estimation of evapotranspiration of blue water (ETb) from farmlands, due to irrigation, is crucial to improve water management, especially in regions where water resources are scarce. Large scale ETb was previously obtained, based on the differences between remote sensing derived actual ET and values simulated from the Global Land Data Assimilation System (GLDAS). In this paper, we improve ...
متن کاملA Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco
This paper describes the setting and results of a real-time experiment of irrigation scheduling by a time series of optical satellite images under real conditions, which was carried out on durum wheat in the Haouz plain (Marrakech, Morocco), during the 2012/13 agricultural season. For the purpose of this experiment, the irrigation of a reference plot was driven by the farmer according to, mainl...
متن کامل